Siri Whu dataset: Example of the aitlas
toolbox in for multi class image classification#
This notebook shows a sample implementation of a multi class image classification using the aitlas
toolbox and the Siri Whu dataset.
[ ]:
from aitlas.datasets import SiriWhuDataset
from aitlas.models import ResNet50
from aitlas.transforms import ResizeCenterCropFlipHVToTensor, ResizeCenterCropToTensor
from aitlas.utils import image_loader
Load the dataset#
[ ]:
dataset_config = {
"data_dir": "./data/SIRI-WHU",
"csv_file": "./data/SIRI-WHU/train.csv"
}
dataset = SiriWhuDataset(dataset_config)
Show images from the dataset#
[ ]:
fig1 = dataset.show_image(1000)
fig2 = dataset.show_image(80)
fig3 = dataset.show_batch(15)
Inspect the data#
[ ]:
dataset.show_samples()
[ ]:
dataset.data_distribution_table()
[ ]:
fig = dataset.data_distribution_barchart()
Load train and test splits#
[ ]:
train_dataset_config = {
"batch_size": 16,
"shuffle": True,
"num_workers": 4,
"data_dir": "./data/SIRI-WHU",
"csv_file": "./data/SIRI-WHU/train.csv"
}
train_dataset = SiriWhuDataset(train_dataset_config)
train_dataset.transform = ResizeCenterCropFlipHVToTensor()
test_dataset_config = {
"batch_size": 4,
"shuffle": False,
"num_workers": 4,
"data_dir": "./data/SIRI-WHU",
"csv_file": "./data/SIRI-WHU/test.csv",
"transforms": ["aitlas.transforms.ResizeCenterCropToTensor"]
}
test_dataset = SiriWhuDataset(test_dataset_config)
len(train_dataset), len(test_dataset)
Setup and create the model for training#
[ ]:
epochs = 10
model_directory = "./experiments/SIRI-WHU"
model_config = {
"num_classes": 12,
"learning_rate": 0.0001,
"pretrained": True,
"metrics": ["accuracy", "precision", "recall", "f1_score"]
}
model = ResNet50(model_config)
model.prepare()
Training and evaluation#
[ ]:
model.train_and_evaluate_model(
train_dataset=train_dataset,
epochs=epochs,
model_directory=model_directory,
val_dataset=test_dataset,
run_id='1',
)
Predictions#
[ ]:
model_path = "./experiments/SIRI-WHU/checkpoint.pth.tar"
#labels = SiriWhuDataset.labels
labels = ["agriculture", "commercial", "harbor", "idle_land", "industrial", "meadow", "overpass", "park", "pond",
"residential", "river", "water"]
transform = ResizeCenterCropToTensor()
model.load_model(model_path)
image = image_loader('./data/predict/image1.tif')
fig = model.predict_image(image, labels, transform)
image = image_loader('./data/predict/image2.tif')
fig = model.predict_image(image, labels, transform)
image = image_loader('./data/predict/image3.tif')
fig = model.predict_image(image, labels, transform)
image = image_loader('./data/predict/image4.tif')
fig = model.predict_image(image, labels, transform)