Massachusetts Roads dataset: Example of the aitlas
toolbox in the context of image segmentation#
This notebook shows a sample implementation of a image segmentation using the aitlas
toolbox.
Import the required packages#
[ ]:
from aitlas.datasets import MassachusettsRoadsDataset
from aitlas.models import DeepLabV3
from aitlas.utils import image_loader
from aitlas.transforms import MinMaxNormTranspose
Visualize images and masks#
[2]:
dataset_config = {
"data_dir": "../data/MassachusettsRoads/train_splits",
"csv_file": "../data/MassachusettsRoads/train.txt"
}
dataset = MassachusettsRoadsDataset(dataset_config)
print(f"Total number of patches: {len(dataset)}")
dataset.show_image(1567);
dataset.show_image(793);
Total number of patches: 9972


[3]:
dataset.data_distribution_table()
[3]:
Number of pixels | |
---|---|
Background | 2.374094e+09 |
Roads | 1.189066e+08 |
[4]:
dataset.data_distribution_barchart();

Load train data#
[5]:
train_dataset_config = {
"batch_size": 16,
"shuffle": True,
"data_dir": "../data/MassachusettsRoads/train_splits",
"csv_file": "../data/MassachusettsRoads/train.txt",
"joint_transforms": ["aitlas.transforms.FlipHVRandomRotate"],
"transforms": ["aitlas.transforms.MinMaxNormTranspose"],
"target_transforms": ["aitlas.transforms.Transpose"]
}
train_dataset = MassachusettsRoadsDataset(train_dataset_config)
validation_dataset_config = {
"batch_size": 16,
"shuffle": False,
"data_dir": "../data/MassachusettsRoads/val_splits",
"csv_file": "../data/MassachusettsRoads/val.txt",
"transforms": ["aitlas.transforms.MinMaxNormTranspose"],
"target_transforms": ["aitlas.transforms.Transpose"]
}
validation_dataset = MassachusettsRoadsDataset(validation_dataset_config)
len(train_dataset), len(validation_dataset)
[5]:
(9972, 126)
Create the model#
[6]:
epochs = 25
model_directory = "./experiments/MassachusettsRoads"
model_config = {
"num_classes": 2,
"learning_rate": 0.0001,
"pretrained": True,
"threshold": 0.5,
"metrics": ["iou"]
}
model = DeepLabV3(model_config)
model.prepare()
Start the training#
[ ]:
model.train_and_evaluate_model(
train_dataset=train_dataset,
val_dataset=validation_dataset,
epochs=epochs,
model_directory=model_directory,
run_id='1'
)
Evalute the model using test data#
[ ]:
test_dataset_config = {
"batch_size": 4,
"shuffle": False,
"data_dir": "../data/MassachusettsRoads/test_splits",
"csv_file": "../data/MassachusettsRoads/test.txt",
"transforms": ["aitlas.transforms.MinMaxNormTranspose"],
"target_transforms": ["aitlas.transforms.Transpose"]
}
test_dataset = MassachusettsRoadsDataset(test_dataset_config)
len(test_dataset)
model = DeepLabV3(model_config)
model.prepare()
model.running_metrics.reset()
model_path = "./experiments/MassachusettsRoads/checkpoint.pth.tar"
model.evaluate(dataset=test_dataset, model_path=model_path)
model.running_metrics.get_scores(model.metrics)
Predictions#
[9]:
model_path = "./experiments/MassachusettsRoads/checkpoint.pth.tar"
#labels = MassachusettsRoadsDataset.labels
labels = ["Background", "Roads"]
transform = MinMaxNormTranspose()
model.load_model(model_path)
image = image_loader('../data/MassachusettsRoads/test_splits/26578720_15_3.jpg')
fig = model.predict_masks(image, labels, transform)
image = image_loader('../data/MassachusettsRoads/test_splits/26278720_15_7.jpg')
fig = model.predict_masks(image, labels, transform)
image = image_loader('../data/MassachusettsRoads/test_splits/22529065_15_1.jpg')
fig = model.predict_masks(image, labels, transform)
2022-10-31 10:12:23,529 INFO Loading checkpoint ./experiments/MassachusettsRoads/checkpoint.pth.tar
2022-10-31 10:12:23,938 INFO Loaded checkpoint ./experiments/MassachusettsRoads/checkpoint.pth.tar at epoch 20


