BigEarth Net 43 dataset: Example of the aitlas
toolbox for multi label image classification#
This notebook shows a sample implementation of a multi label image classification using the aitlas
toolbox using the Big Earth Net multi label dataset with 43 labels.
[ ]:
from aitlas.datasets import BigEarthNetDataset
from aitlas.models import ResNet50MultiLabel
from aitlas.transforms import ResizeCenterCropFlipHVToTensor, ResizeCenterCropToTensor
from aitlas.utils import image_loader
Load the dataset#
[ ]:
dataset_config = {
"lmdb_path": "./data/BigEarthNet/lmdb",
"import_to_lmdb": false,
"csv_file": "./data/BigEarthNet/splits/train.csv",
"data_dir": "./data/BigEarthNet/BigEarthNet-v1.0",
"selection": "rgb",
"version": "43 labels"
}
dataset = BigEarthNetDataset(dataset_config)
Show images from the dataset#
[ ]:
fig1 = dataset.show_image(1000)
fig2 = dataset.show_image(30)
fig3 = dataset.show_batch(15)
Inspect the data#
[ ]:
dataset.show_stats()
Load train and test splits#
[ ]:
train_dataset_config = {
"batch_size": 16,
"shuffle": True,
"num_workers": 4,
"lmdb_path": "./data/BigEarthNet/lmdb",
"import_to_lmdb": false,
"csv_file": "./data/BigEarthNet/splits/train.csv",
"data_dir": "./data/BigEarthNet/BigEarthNet-v1.0",
"transforms": ["aitlas.transforms.ToTensorRGB", "aitlas.transforms.NormalizeRGB"],
"bands10_mean": [429.9430203,614.21682446,590.23569706],
"bands10_std": [572.41639287,582.87945694,675.88746967],
"selection": "rgb",
"version": "43 labels"
}
train_dataset = BigEarthNetDataset(train_dataset_config)
train_dataset.transform = ResizeCenterCropFlipHVToTensor()
test_dataset_config = {
"batch_size": 4,
"shuffle": False,
"num_workers": 4,
"lmdb_path": "./data/BigEarthNet/lmdb",
"import_to_lmdb": false,
"csv_file": "./data/BigEarthNet/splits/train.csv",
"data_dir": "./data/BigEarthNet/BigEarthNet-v1.0",
"transforms": ["aitlas.transforms.ToTensorRGB", "aitlas.transforms.NormalizeRGB"],
"bands10_mean": [429.9430203,614.21682446,590.23569706],
"bands10_std": [572.41639287,582.87945694,675.88746967],
"selection": "rgb",
"version": "43 labels"
}
test_dataset = BigEarthNetDataset(test_dataset_config)
len(train_dataset), len(test_dataset)
Setup and create the model for training#
[ ]:
epochs = 10
model_directory = "./data/BigEarthNet/experiments"
model_config = {
"num_classes": 43,
"learning_rate": 0.0001,
"pretrained": False,
"threshold": 0.5,
"metrics": ["accuracy", "precision", "recall", "f1_score"]
}
model = ResNet50MultiLabel(model_config)
model.prepare()
Training and evaluation#
[ ]:
model.train_and_evaluate_model(
train_dataset=train_dataset,
epochs=epochs,
model_directory=model_directory,
val_dataset=test_dataset,
run_id='1',
)
Predictions#
[ ]:
model_path = "./data/BigEarthNet/checkpoint.pth.tar"
labels = BigEarthNetDataset.labels
model.load_model(model_path)
image = image_loader('./data/predict/image1.tif')
fig = model.predict_image(image, labels)
image = image_loader('./data/predict/image2.tif')
fig = model.predict_image(image, labels)
image = image_loader('./data/predict/image3.tif')
fig = model.predict_image(image, labels)
image = image_loader('./data/predict/image4.tif')
fig = model.predict_image(image, labels)