Amazon Forest dataset: Example of the aitlas
toolbox for semantic segmentation#
This notebook shows a sample implementation of a image segmentation using the aitlas
toolbox.
Import the required packages#
[ ]:
from aitlas.datasets import AmazonRainforestDataset
from aitlas.models import DeepLabV3
from aitlas.transforms import MinMaxNormTranspose
from aitlas.utils import image_loader
Visualize images and masks#
[2]:
dataset_config = {
"data_dir": "../data/AmazonForest/Training"
}
dataset = AmazonRainforestDataset(dataset_config)
print(f"Total number of patches: {len(dataset)}")
dataset.show_image(10);
dataset.show_image(26);
Total number of patches: 30


[3]:
dataset.data_distribution_table()
[3]:
Number of pixels | |
---|---|
Background | 3654658.0 |
Forest | 4203929.0 |
[4]:
dataset.data_distribution_barchart();

Load train data#
[5]:
train_dataset_config = {
"batch_size": 16,
"shuffle": True,
"num_workers": 4,
"data_dir": "../data/AmazonForest/Training",
"joint_transforms": ["aitlas.transforms.FlipHVRandomRotate"],
"transforms": ["aitlas.transforms.MinMaxNormTranspose"],
"target_transforms": ["aitlas.transforms.Transpose"]
}
train_dataset = AmazonRainforestDataset(train_dataset_config)
len(train_dataset)
[5]:
30
Create the model#
[6]:
epochs = 50
model_directory = "./experiments/amazon_rainforest"
model_config = {
"num_classes": 2,
"learning_rate": 0.0001,
"pretrained": True,
"threshold": 0.5,
"metrics": ["iou"]
}
model = DeepLabV3(model_config)
model.prepare()
Start the training#
[ ]:
model.train_model(
train_dataset=train_dataset,
epochs=epochs,
model_directory=model_directory,
run_id='1'
);
Evalute the model using test data#
[ ]:
test_dataset_config = {
"batch_size": 4,
"shuffle": False,
"num_workers": 4,
"data_dir": "../data/AmazonForest/Validation",
"transforms": ["aitlas.transforms.MinMaxNormTranspose"],
"target_transforms": ["aitlas.transforms.Transpose"]
}
test_dataset = AmazonRainforestDataset(test_dataset_config)
len(test_dataset)
model = DeepLabV3(model_config)
model.prepare()
model.running_metrics.reset()
model_path = "./experiments/amazon_rainforest/checkpoint.pth.tar"
model.evaluate(dataset=test_dataset, model_path=model_path)
model.running_metrics.get_scores(model.metrics)
Predictions#
[10]:
model_path = "./experiments/amazon_rainforest/checkpoint.pth.tar"
#labels = AmazonRainforestDataset.labels
labels = ["Background", "Forest"]
transform = MinMaxNormTranspose()
model.load_model(model_path)
image = image_loader('../data/AmazonForest/Test/7.tiff')
fig = model.predict_masks(image, labels, transform)
image = image_loader('../data/AmazonForest/Test/6.tiff')
fig = model.predict_masks(image, labels, transform)
image = image_loader('../data/AmazonForest/Test/0.tiff')
fig = model.predict_masks(image, labels, transform)
image = image_loader('../data/AmazonForest/Test/4.tiff')
fig = model.predict_masks(image, labels, transform)
2022-10-30 13:43:19,178 INFO Loading checkpoint ./experiments/amazon_rainforest/checkpoint.pth.tar
2022-10-30 13:43:19,564 INFO Loaded checkpoint ./experiments/amazon_rainforest/checkpoint.pth.tar at epoch 51



