Planet UAS dataset: Example of the aitlas
toolbox for multi label image classification#
This notebook shows a sample implementation of a multi label image classification using the aitlas
toolbox using the Planet UAS multi label dataset.
[ ]:
from aitlas.datasets import PlanetUASMultiLabelDataset
from aitlas.models import ResNet50MultiLabel
from aitlas.transforms import ResizeCenterCropFlipHVToTensor, ConvertToRGBResizeCenterCropToTensor
from aitlas.utils import image_loader
Load the dataset#
[ ]:
dataset_config = {
"data_dir": "./data/PlanetUAS/images",
"csv_file": "./data/PlanetUAS/multilabels.txt"
}
dataset = PlanetUASMultiLabelDataset(dataset_config)
Show images from the dataset#
[ ]:
fig1 = dataset.show_image(1000)
fig2 = dataset.show_image(30)
fig3 = dataset.show_batch(15)
Inspect the data#
[ ]:
dataset.show_samples()
[ ]:
dataset.data_distribution_table()
[ ]:
fig = dataset.data_distribution_barchart()
Load train and test splits#
[ ]:
train_dataset_config = {
"batch_size": 16,
"shuffle": True,
"num_workers": 4,
"data_dir": "./data/PlanetUAS/images",
"csv_file": "./data/PlanetUAS/train.csv"
}
train_dataset = PlanetUASMultiLabelDataset(train_dataset_config)
train_dataset.transform = ResizeCenterCropFlipHVToTensor()
Setup and create the model for training#
[ ]:
epochs = 10
model_directory = "./experiments/PlanetUAS"
model_config = {
"num_classes": 17,
"learning_rate": 0.0001,
"pretrained": True,
"threshold": 0.5,
"metrics": ["accuracy", "precision", "recall", "f1_score"]
}
model = ResNet50MultiLabel(model_config)
model.prepare()
Training and evaluation#
[ ]:
model.train(
train_dataset=train_dataset,
epochs=epochs,
model_directory=model_directory,
run_id='1',
)
Predictions#
[ ]:
model_path = "./experiments/PlanetUAS/checkpoint.pth.tar"
#labels = PlanetUASMultiLabelDataset.labels
labels = ["haze", "primary", "agriculture", "clear", "water", "habitation", "road", "cultivation", "slash_burn",
"cloudy", "partly_cloudy", "conventional_mine", "bare_ground", "artisinal_mine", "blooming",
"selective_logging", "blow_down"]
transform = ConvertToRGBResizeCenterCropToTensor()
model.load_model(model_path)
image = image_loader('./data/predict/image1.tif')
fig = model.predict_image(image, labels, transform)
image = image_loader('./data/predict/image2.tif')
fig = model.predict_image(image, labels, transform)
image = image_loader('./data/predict/image3.tif')
fig = model.predict_image(image, labels, transform)
image = image_loader('./data/predict/image4.tif')
fig = model.predict_image(image, labels, transform)