CamVid dataset: Example of the aitlas
toolbox for semantic segmentation#
This notebook shows a sample implementation of a image segmentation using the aitlas
toolbox.
Import the required packages#
[ ]:
from aitlas.datasets import CamVidDataset
from aitlas.models import DeepLabV3
from aitlas.transforms import MinMaxNormTranspose
from aitlas.utils import image_loader
Visualize images and masks#
[2]:
dataset_config = {
"data_dir": "../data/camvid/train"
}
dataset = CamVidDataset(dataset_config)
print(f"Total number of patches: {len(dataset)}")
dataset.show_image(10);
dataset.show_image(26);
Total number of patches: 367


[3]:
dataset.data_distribution_table()
[3]:
Number of pixels | |
---|---|
sky | 10682767.0 |
building | 14750079.0 |
column_pole | 623349.0 |
road | 20076880.0 |
sidewalk | 2845085.0 |
tree | 6166762.0 |
sign | 743859.0 |
fence | 714595.0 |
car | 3719877.0 |
pedestrian | 405385.0 |
byciclist | 184967.0 |
void | 2503995.0 |
[4]:
dataset.data_distribution_barchart();

Load train data#
[3]:
train_dataset_config = {
"batch_size": 16,
"shuffle": True,
"data_dir": "../data/camvid/train",
"transforms": ["aitlas.transforms.MinMaxNormTranspose"],
"target_transforms": ["aitlas.transforms.Transpose"]
}
train_dataset = CamVidDataset(train_dataset_config)
validation_dataset_config = {
"batch_size": 16,
"shuffle": False,
"data_dir": "../data/camvid/val",
"transforms": ["aitlas.transforms.MinMaxNormTranspose"],
"target_transforms": ["aitlas.transforms.Transpose"]
}
validation_dataset = CamVidDataset(validation_dataset_config)
len(train_dataset), len(validation_dataset)
[3]:
(367, 101)
Create the model#
[9]:
epochs = 100
model_directory = "./experiments/camvid"
model_config = {
"num_classes": 12,
"learning_rate": 0.0001,
"pretrained": True,
"threshold": 0.5,
"metrics": ["iou"]
}
model = DeepLabV3(model_config)
model.prepare()
Start the training#
[ ]:
model.train_and_evaluate_model(
train_dataset=train_dataset,
val_dataset=validation_dataset,
epochs=epochs,
model_directory=model_directory,
run_id='1'
);
Evalute the model using test data#
[ ]:
test_dataset_config = {
"batch_size": 4,
"shuffle": False,
"num_workers": 4,
"data_dir": "../data/camvid/test",
"transforms": ["aitlas.transforms.MinMaxNormTranspose"],
"target_transforms": ["aitlas.transforms.Transpose"]
}
test_dataset = CamVidDataset(test_dataset_config)
len(test_dataset)
model = DeepLabV3(model_config)
model.prepare()
model.running_metrics.reset()
model_path = "./experiments/camvid/checkpoint.pth.tar"
model.evaluate(dataset=test_dataset, model_path=model_path)
model.running_metrics.get_scores(model.metrics)
Predictions#
[13]:
model_path = "./experiments/camvid/checkpoint.pth.tar"
labels = CamVidDataset.labels
transform = MinMaxNormTranspose()
model.load_model(model_path)
image = image_loader('../data/camvid/test/images/Seq05VD_f02520.png')
fig = model.predict_masks(image, labels, transform)
image = image_loader('../data/camvid/test/images/0001TP_009450.png')
fig = model.predict_masks(image, labels, transform)
image = image_loader('../data/camvid/test/images/Seq05VD_f01500.png')
fig = model.predict_masks(image, labels, transform)
image = image_loader('../data/camvid/test/images/Seq05VD_f00180.png')
fig = model.predict_masks(image, labels, transform)
2022-10-31 16:52:34,140 INFO Loading checkpoint ./experiments/camvid/checkpoint.pth.tar
2022-10-31 16:52:34,663 INFO Loaded checkpoint ./experiments/camvid/checkpoint.pth.tar at epoch 101



