Semantic image segmentation dataset statistics#
[ ]:
from aitlas.datasets import (
MassachusettsBuildingsDataset,
MassachusettsRoadsDataset,
LandCoverAiDataset,
InriaDataset,
ChactunDataset,
AmazonRainforestDataset,
AIRSDataset,
#SpaceNet6Dataset
)
Massachusetts Buildings Dataset#
[4]:
dataset_config = {
"data_dir": "../data/MassachusettsBuildings/train_splits",
"csv_file": "../data/MassachusettsBuildings/train.txt"
}
dataset = MassachusettsBuildingsDataset(dataset_config)
print(f"Total number of patches: {len(dataset)}")
dataset.show_image(1);
dataset.show_image(80);
Total number of patches: 1232


[5]:
dataset.data_distribution_table()
[5]:
Number of pixels | |
---|---|
Background | 267324624.0 |
Buildings | 40675356.0 |
[6]:
dataset.data_distribution_barchart();

Massachusetts Roads Dataset#
[7]:
dataset_config = {
"data_dir": "../data/MassachusettsRoads/train_splits",
"csv_file": "../data/MassachusettsRoads/train.txt"
}
dataset = MassachusettsRoadsDataset(dataset_config)
print(f"Total number of patches: {len(dataset)}")
dataset.show_image(1);
dataset.show_image(80);
Total number of patches: 9972


[8]:
dataset.data_distribution_table()
[8]:
Number of pixels | |
---|---|
Background | 2.374094e+09 |
Roads | 1.189067e+08 |
[9]:
dataset.data_distribution_barchart();

Landcover AI Dataset#
[11]:
dataset_config = {
"data_dir": "../data/landcoverai/output",
"csv_file": "../data/landcoverai/train.txt"
}
dataset = LandCoverAiDataset(dataset_config)
print(f"Total number of patches: {len(dataset)}")
dataset.show_image(1);
dataset.show_image(80);
dataset.show_image(4569);
Total number of patches: 7470



[14]:
dataset.data_distribution_table()
[14]:
Number of pixels | |
---|---|
Background | 1.134440e+09 |
Buildings | 1.676724e+07 |
Woodlands | 6.487146e+08 |
Water | 1.265083e+08 |
Road | 3.178538e+07 |
[13]:
dataset.data_distribution_barchart();

Chactun Dataset#
[15]:
dataset_config = {
"data_dir": "../data/chactun/train"
}
dataset = ChactunDataset(dataset_config)
print(f"Total number of patches: {len(dataset)}")
dataset.show_image(790);
dataset.show_image(793);
Total number of patches: 1764


[16]:
dataset.data_distribution_table()
[16]:
Number of pixels | |
---|---|
Aguada | 1357783.0 |
Building | 6904853.0 |
Platform | 8656330.0 |
[17]:
dataset.data_distribution_barchart();

Inria Dataset#
[2]:
dataset_config = {
"data_dir": "../data/inria/output",
"csv_file": "../data/inria/train.txt"
}
dataset = InriaDataset(dataset_config)
print(f"Total number of patches: {len(dataset)}")
dataset.show_image(1);
dataset.show_image(80);
Total number of patches: 18000


[22]:
dataset.data_distribution_table()
[22]:
Number of pixels | |
---|---|
Background | 3.789786e+09 |
Buildings | 7.102154e+08 |
[23]:
dataset.data_distribution_barchart();

Amazon Rain Forest Dataset#
[18]:
dataset_config = {
"data_dir": "../data/AmazonForest/Training"
}
dataset = AmazonRainforestDataset(dataset_config)
print(f"Total number of patches: {len(dataset)}")
dataset.show_image(1);
dataset.show_image(5);
Total number of patches: 30


[19]:
dataset.data_distribution_table()
[19]:
Number of pixels | |
---|---|
Background | 3654658.0 |
Forest | 4203929.0 |
[20]:
dataset.data_distribution_barchart();

AIRS (Aerial Imagery for Roof Segmentation) Dataset#
[6]:
dataset_config = {
"data_dir": "../data/Airs/train/data",
"csv_file": "../data/Airs/train/train.txt"
}
dataset = AIRSDataset(dataset_config)
print(f"Total number of patches: {len(dataset)}")
dataset.show_image(84);
dataset.show_image(45000);
Total number of patches: 47900


[4]:
dataset.data_distribution_table()
[4]:
Number of pixels | |
---|---|
Background | 1.173438e+10 |
Roof | 2.406187e+08 |
[5]:
dataset.data_distribution_barchart();
